Publications 

Here, we list publications in the context of the center.
 
For now, publications that are foundational for the center are listed below:
 
  1. E. Cleary, A. Garbuno-Inigo, S. Lan, T. Schneider, and A. M. Stuart; Calibrate, emulate, sample. J. Comp. Phys., 424 (2021)

  2. Guo, J., Yuan, C., Ning, S., Zheng, T., Bello, N., Kiryluk, K., and Weng, C.; Similarity-based Health Risk Prediction Using Domain Fusion and Electronic Health Records Data. Journal of Biomedical Informatics, 116  (2021)

  3. Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M., Seneviratne, S. I., and Frankenberg, C.; Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature, 592 (2021)

  4. Kyker-Snowman, E., et al.; Increasing the spatial and temporal impact of ecological research: A roadmap for integrating a novel terrestrial process into an Earth system model.. Global Change Biology, 28, 665-684 (2022)

  5. Randazzo, N.A., et al.;  Higher autumn temperatures lead to contrasting CO2 flux responses in boreal forests versus tundra and shrubland. Geophysical Research Letters, 48 (2021)

  6. Sun, W., et al.; Midwest U.S. croplands determine model divergence in North American carbon fluxes. AGU Advances, 2 (2021)

  7. Schneider, T., Jeevanjee, N, and Socolow, R.; Accelerating progress in climate science. Physics Today, 74, 44-51, (2021)

  8. Tang C., Uriarte, M., Jin, H., Morton, D. and Zheng, T., Large-Scale; Image-Based Tree Species Mapping in a Tropical Forest using Artificial Perceptual Learning. Methods in Ecology and Evolution, 12, 4, 608-618 (2021)

  9. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., PrabhatDeep learning and process understanding for data-driven Earth system science. Nature 566 (7743), pp. 195 – 204 (2019)
  10. ElGhawi, R., Kraft, B., Reimers, C., Reichstein, M., Körner, M., Gentine P, et al . Hybrid modeling of evapotranspiration: inferring stomatal and aerodynamic resistances using combined physics-based and machine learning. Environ Res Lett. March 2023;18(3):034039.

  11. Liu, G., Migliavacca, M., Reimers, C., Kraft, B., Reichstein, M., Richardson, A., et al. DeepPhenoMem V1.0: Deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology. EGUsphere. March 07, 2024;1–29.

  12. Son, R., Stacke, T., Gayler, V., Nabel, JEMS., Schnur, R., Alonso, L., et al. Integration of a Deep-Learning-Based Fire Model Into a Global Land Surface Model. Journal of Advances in Modeling Earth Systems. (2024);16(1):e2023MS003710.

  13. Zhan, C.Orth, R.Yang, H.Reichstein, M.Zaehle, S.De Kauwe, M. G., et al. (2024). Estimating the CO2 fertilization effect on extratropical forest productivity from flux-tower observations. Journal of Geophysical Research: Biogeosciences, 129, e2023JG007910. https://doi.org/10.1029/2023JG00791

The MC³ 4 Earth Center is a collaboration of the Max Planck Institute of Biogeochemistry, Max Planck Institute for Chemistry, California Institute of Technology, Carnegie Institution for Science (Department of Global Ecology) and Columbia University. It's coordination and Max-Planck research is funded by the Max Planck Foundation.

Contact: Stefanie Johnson (sjohnson@bgc-jena.mpg.de)

© 2024 Max-Planck-Gesellschaft